The galactic spin of disc galaxies through the SDSS

Bernardo Cervantes Sodi Korea Institute for Advance Study

Outline

- Introduction:
 - what is the spin
 - its role on the structure of present day galaxies (theory / observations)
 - Distributions from N-body simulations
- * Model for the estimation of the spin for SDSS galaxies
- * General results (Emphasis on barred disc galaxies)
- Conclusions

Basic picture of galaxy formation (cartoon version)

- Halo collapses and drags baryons into the gravitational potential well
- Gas cools by radiating processes to settle down on a rotationally supported disc.

* According to the amount of angular momentum:

This simple scenario leads to predictions of present day disc galaxies that show good resemblance with observations (Fall & Efstathiou 1980; Flores et al. (1993); Firmani, Hernandez & Gallagher (1996), Dalcanton, Spergel & Summers (1997); van den Bosch (1998); Avila-Reese et al. (1998), Zhang & Wyse (2000); Silk (2001); Kregel, van der Kruit & Freeman (2005); Klypin et al. (2002); ...

Fall (1983) and Romanowsky & Fall (2013)

 $j = J/M \sim M\alpha$ with $\alpha \approx$ 0.6

Disc and elliptical galaxies show an offset of ~ 5 dex

The spin parameter λ

* Defined by Peebles (1969, 71):

$$\lambda = \frac{L|E|^{1/2}}{GM^{5/2}}$$

* Measure of the degree of rotational support of the system

$$\frac{g_{\phi}}{g} \sim \frac{V_c^2}{r} \frac{r^2}{GM} = M^2 r^2 v_c^2 \frac{GM^2}{r} \frac{1}{G^2 M^5} \sim \frac{L^2 E}{G^2 M^5}$$

Influence of the spin on galaxy properties (semi-analytical models) I

Dalcanton et al. 1997 Mo, Mao & White 1998

Influence of the spin on galaxy properties (semi-analytical models) II

Efstathiou, Lake & Negroponte (1982) $\epsilon_c = \frac{V_{max}}{GM_d/R_d} \le 1.1$

or int terms of the spin (Mo, Mao & White 1998):

$$\epsilon_c = \frac{\lambda_d}{2^{1/2} f_d}$$

Galaxies with low spin, more compact and self gravitating, are expected to develop bar instabilities

Spin distributions from N-body simulations

Spin determination I

(MMW 98, Boissier+00, Hernandez & Cervantes-Sodi 06, Tonini+06)

$$\lambda = \frac{L|E|^{1/2}}{GM^{5/2}}$$

 We consider a disc for the baryonic component of the galaxy with an exponential surface mass density profile:

$$\Sigma(r) = \Sigma_0 e^{-r/R_d}$$

* and a total disc mass:

$$M_d = 2\pi \Sigma_0 R_d^2$$

 and a dark matter halo with an isothermal density profile:

$$\rho(r) = \frac{1}{4\pi G} \left(\frac{V_d}{r}\right)^2$$

* and a finite radius given by:

$$R_H = \frac{M_H G}{V_d^2}$$

Spin determination II

* The energy is given by the halo:

$$E = \frac{-V_d^2 M_H}{2}$$

For the angular momentum we consider that the specific angular momenta of disc and halo are equal (Fall & Efstathiou 1980):

 $L_d/M_d = l_d = 2V_d R_d$

- Finally we adopt a specific prescription for the disc mass fraction:
 - * f = cte.
 - * $f = f(\Sigma)$ following Gnedin et al. (2007)
 - f = f(M*) following Guo et al.(2010)

Spin determination III

Our final expression is:

$$\lambda = \left(\frac{\sqrt{2}}{G}\right) F_d R_d V_c^2 M_d^{-1}$$

 In the most simplified version, considering a constant dark matter fraction, and introducing a baryonic Tully-Fisher relation:

$$\lambda = \frac{21.8R_d/kpc}{(V_d/km * s^{-1})^{1.5}}$$

 Given that the SDSS does not provide measurements for the rotation curve, we introduce a traditional Tully-Fisher relation (Pizagno et al. 2007)

Empirical spin distributions

Environmental and mass dependencies

Spin and galaxy morphology

Park & Choi (2005)

Cervantes-Sodi & Hernandez (2009)

 $0.076 < \lambda < 0.088$

3

3.

Spin and gas mass fraction

Cervantes-Sodi & Hernandez (2009)

Huang et al. (2013)

Spin and bar fraction

- * Data drawn from Lee et al. (2012)
 - Sample of ~ 10,000 disc galaxies visually classified on:
 - Strong bars (the bar is larger than one quarter the size of the galaxy)
 - Weak bars
 - Unbarred galaxies

Spin and bar fraction

Cervantes-Sodi, Li, Park & Wang (2013)

Dependence on other galaxy properties

Joint dependence I

Cervantes-Sodi, Li, Park & Wang (2013)

Joint dependence II

Cervantes-Sodi, Li, Park & Wang (2013)

Decreasing bar fraction for vanishing spin

Disc instabilities and semi-analytic modelling of galaxy formation

E. Athanassoula*

Laboratoire d'Astrophysique de Marseille, Observatoire Astronomique de Marseille Provence, Technopole de l'Etoile – Site de Chateau-Gombert, 38 rue Frédéric Joliot-Curie, 13388 Marseille Cédex 13, France

Accepted 2008 July 28. Received 2008 July 18; in original form 2008 July 10

ABSTRACT

The Efstathiou, Lake and Negroponte (1982) criterion cannot distinguish bar stable from bar unstable discs and thus should not be used in semi-analytic galaxy formation simulations. I discuss the reasons for this, illustrate it with examples and point out shortcomings in the recipes used for spheroid formation. I propose an alternative, although much less straightforward,

A more serious one is that the disc velocity dispersion is not taken into account. A few years after the ELN criterion was published, Athanassoula & Sellwood (1986) showed that velocity dis persion has an important influence on bar stability, which is, in fact, a function of both disc random motions and halo mass. They also presented a disc with no halo, which is stable because of its high-velocity dispersion. Although these results are based on

Ordered vs. random motion

Cervantes-Sodi, Li, Park & Wang (2013)

Three regimes

What about weak bars?

ON THE FORMATION OF DISK GALAXIES AND MASSIVE CENTRAL OBJECTS

J. A. Sellwood¹ and E. M. Moore

Department of Physics and Astronomy, Rutgers, State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019; sellwood@physics.rutgers.edu

> maximum disks in all HSB galaxies presented in § 2. Moreover, while the normal bar instability provides a natural explanation for the existence of strong bars, we are not aware of a model for the origin of weak bars.

How large are the bars in barred galaxies?

Peter Erwin*†‡

Instituto de Astrofísica de Canarias, C/Vía Láctea s/n. 38200 La Laguna. Tenerife. Spain

	Table 8 s	ummarizes results from ei	ght different pa	pers. In each		
Study	case, I have included as many models from each study as possi- ble, though in some cases additional models are left out because				R _{bar} /h	Notes
Pfenniger & Friedli (1991)	there were r	no bar or disc sizes for the	m. One thing is	immediately	0.6	
Combes & Elmegreen (1993)	apparent: simulations tend to produce large bars. Indeed, several simulations produce bars that are either at the upper end of the local				0.6	1
					1.8	2
Friedli & Benz (1993)	n in nearby gala	axies. Except	0.9	3		
Berentzen et al. (1998) Athanassoula & Misiriotis (2002) Valenzuela & Klypin (2003)	for two of the earlier simulations, no N-body bars are as small as typical Sc–Sd bars. (Ironically, one of these is the 'early-type' model CS2 of Combes & Elmegreen 1993, which produced a shorter bar than their 'late-type' model CSE.)				3.6	4
					2.4	5
					2.8-3.2	6
					1.5-2.3	6
					1.4-1.5	7
	A ₂	N-body	4.5-5.5	4.2	1.1-1.3	7
	В	N-body	4.2-5.0	5.0	0.8 - 1.0	7
Holley-Bockelmann et al. (2005)	F_5	N-body	0.026	0.01	2.6	8
Immeli et al. (2004)	F	N-body+ gas+ SF	3-4.5	1.9	1.6 - 2.1	9

Extreme case of high λ

 LSBs are extreme cases of high spinning disc galaxies (Jimenez et al. 1999; Kim & lee 2012)

Simulations of LSBs tend to produce smaller, short lived bars when compared with the ones produced on massive discs (Mihos et al. 1997; Mayer & Wadsley 2004)

- Scannapieco & Athanassoula (2012) on fully cosmological hydrodynamical simulations of MW-mass galaxies :
 - Strongest bar is formed in a bulge-disk-halo system with the lowest spin
 - Weakest bar on a pure disk with the highest spin

(Erwin 2005)

General conclusions

- The spin parameter plays a crucial role shaping the structure and morphology of present day disc galaxies.
- Based on a simple model we can give an estimation of the λ spin parameter for any disc galaxy which can be used as an objective and quantitative parameter to describe the morphology of large samples of galaxies
- The well defined and objective nature of the dimensionless spin parameter makes it ideal for comparing the output of numerical galactic formation scenarios to real galactic samples

Regarding barred disc galaxies:

We found a strong dependence of the bar fraction on the galactic spin for the case of disc galaxies

Strong bars :

- * Preferentially found at lowintermediate λ_d values due to their self-gravity
- * At low λ_d the disc become dominated by random motions that prevents the formation/growth of bars

Weak bars :

- * Hosted by galaxies with high λ_d values
- Their size might be restricted by the sparsity of the disc
- The large fraction of gas on these galaxies play an important role on restricting the growth of the bar.

Comparison with numerical simulations

For our galaxy, our estimation is λ
= 0.023, in agreement with
theoretical expectations (λ = 0.02:
Natarajan 1998; Hernandez et al.
2001)

Cervantes-Sodi, et al. (2008)

Verification with highly accurate measurements of λ in observed galaxies

- * Muñoz-Mateos et al. (2011)
- Models of observed disc galaxies, matching multiwavelength luminosity profiles and rotation curves.

Specific angular momentum

